
page 1 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science
of detecting Cobalt Strike
BY NICK MAVIS

EDITED BY JOE MARSHALL AND JON MUNSHAW

Updated September 21, 2020

https://twitter.com/nickmavis

page 2 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

TABLE OF CONTENTS
Introduction .. 3

Getting up to speed .. 3

Listeners ... 3

Web management ... 4

Reporting .. 5

Attack analysis ... 5

Target Module: Raw Shellcode generator ... 5

Execution .. 5

Detection .. 7

Target module: Staged/stageless executable generator ... 8

C2 Communication ... 10

Target Module: HTML application attack generator .. 13

Target Module: Scripted web delivery ... 16

Target Module: Signed Java Applet Attack ... 17

Target Module: Smart Java Applet Attack ... 18

Target module: System profiler ... 24

Conclusion .. 26

Appendix A: Coverage.. 28

Staged/Stageless Executables ... 28

Scripted Web Delivery PowerShell .. 28

Beacon Binary Payloads .. 28

Beacon PowerShell payloads .. 28

HTML Application (HTA) Attacks ... 28

Cobalt Strike signed applet attack .. 29

Cobalt Strike smart applet attack .. 29

Cobalt Strike system profiler attack .. 29

page 3 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

INTRODUCTION
Cobalt Strike is ubiquitous in the cyber security arena. It’s
a prolific toolkit used at many levels of intrusion to solve
adversaries' problems like post-intrusion exploitation,
beaconing for command and control (C2s), stealth and
reconnaissance.

Cobalt Strike is a modularized attack framework: Each
module fulfills a specific function and stands alone. It’s hard
to detect, because its components might be customized
derivatives from another module, new, or completely
absent. Malicious actors find Cobalt Strike’s obfuscation
techniques and robust tools for C2, stealth and data
exfiltration particularly attractive.

Cisco Talos recently updated its SNORT® and ClamAV®
signatures to detect Cobalt Strike, version 4.0, a common
platform utilized as one part of attack processes. This
paper outlines the challenges we were confronted with
when analyzing Cobalt Strike, and the ways we crafted our
detection. We will address all the modules we’ve updated
coverage for, how we analyzed and thought about detection
and the signature that resulted.

GETTING UP TO SPEED
Cobalt Strike is a paid penetration-testing tool that anyone
can use. Malicious actors have used it for years to deploy
“Listeners” on victim machines. In this paper, we’ll dive into
some of the core components of Cobalt Strike and then
break down our analysis of these components and how we
can protect against them. We will also look at Cobalt Strike
from the adversary’s perspective.

LISTENERS

Listeners are at the core of Cobalt Strike. They allow
adversaries to configure the C2 method used in an attack.
Every attack or payload generated in Cobalt Strike requires
the targeted user to select a Listener to embed within
it. This will determine how an infected host will reach
out to the C2 server to retrieve additional payloads and
instructions.

When creating a listener, the user can configure the payload
type, name, C2 server and port, and other various options
such as named pipes or proxy servers (Figure 1). Users can
choose from:

• Beacon DNS

• Beacon HTTP

• Beacon HTTPS

• Beacon SMB

• Beacon TCP

• External C2

• Foreign HTTP

• Foriegn HTTPS

Potentially the most powerful aspect of Cobalt Strike is
the array of malleable C2 profiles, which allows users to
configure how attacks are created, obfuscate and manage
the flow of execution at a very low level.

There are several ways to visualize how an adversary
interacts with infected Cobalt Strike hosts, such as a
session table, pivot graph, or a target table. In Figure 2,
you can see the session table, along with some options
available when selecting a host.

Figure 1: Cobalt Strike Listener console

page 4 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

However, this does not give insight into how the hosts are
interconnected, nor the C2 path taken when contacting the
Cobalt Strike C2. For that, we can swap to the Pivot Graph
(Figure 3).

In Figure 3, the `WIN-498IQCJRIUQ` host is connected through
“DESKTOP-R8VN37V” and all C2 operations are executed
using that path. Listeners that are designed only to connect
infected hosts laterally include the SMB and TCP beacons.

Attackers can also control hosts through the interactive beacon
console. This allows for more advanced control of a host.

WEB MANAGEMENT

Cobalt Strike delivers exploits and/or malicious payloads
using an attacker-controlled web server. The web server
can be configured to perform the following actions:

• Host files

• Clone an existing website to trick users

• Scripted web delivery

• Signed Applet Attack (Java)

• Smart Applet Attack (Java)

• System profiling

Figure 4 shows how an adversary would manage the
“Sites” console from their end. In this example, we’re
hosting a malicious PowerShell script on the ‘/malware’
URI over port 80.

You can also see that the HTTP based listeners are also
present as they are used to deliver additional payloads and
C2 commands to victims.

When a victim reaches out to the Cobalt Strike web server,
it’s logged for operators.

Figure 2: Cobalt Strike session table

Figure 4

Figure 3: Cobalt Strike Pivot Table

page 5 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

REPORTING

Cobalt Strike offers a variety of report generators to get a
complete breakdown of the infected hosts and associated data.

Available options include:

• Activity report

• Hosts report

• Indicators of compromise

• Sessions report

• Social engineering report

• Tactics, techniques and procedures

ATTACK ANALYSIS

TARGET MODULE: RAW SHELLCODE GENERATOR

Cobalt Strike generates raw, malicious payloads that an
attacker could implement into other attacks. The payload
can be generated as raw shell code or preformatted in

almost any language desired, including PowerShell, Python
and Java, among many others. When generating raw
payloads, the user is presented with only the HTTP, HTTPS
and DNS beacons to choose from. The generated payload
can act as a staging payload for the Cobalt beacon, to be
plugged into an exploit of their choice.

For analysis, we only concentrated on the x86 and x64
binary payloads generated in C. No matter the code
selected, the resulting payload isn’t designed to execute by
itself. The generator’s primary function is to format the shell
code in a way that allows the user to drop in a third-party
exploit or custom exploits and have it preformatted in that
particular programming language.

Figure 5 shows a payload generated with the x86 HTTP listener.

EXECUTION

Since the payload is only a bunch of raw bytes, it won’t
just run if a user double-clicked the file. The adversary
would have to load the shellcode and jump to the desired
entry point. This is trivial — we can use a quick C script that

Figure 5: Cobalt Strike payload generated with x86 HTTP Listener.

page 6 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

loads the desired shellcode and then
executes it as if it were a function.
This enables defenders to quickly
analyze shell code in some cases
without having to perform any over-
the-top attempts to load it (Figure 6).

Once the buffer is allocated and
called, we can see the start of the
Cobalt Strike shellcode in Figure 7.

It starts with a common shellcode
instruction `cld`, which is used to
make sure strings are processed
from left to right by clearing the
Direction Flag (DF). Then, we
immediately call the first function to
import “wininet.dll” (Figure 8).

Immediately, we can see a string
for “wininet”, and a four-byte hex
value pushed onto the stack, and an
indirect register call on `ebp`, which
currently points to the first instruction
after `shellcode_main()` [shellcode_
main+0x6].

The shellcode is unaware of the
libraries it needs to execute and
needs to import them. This technique
is often used by malware to
obfuscate calls to the Windows API
by resolving imports using a hash of
the function. This one, in particular,
is a modified version of Metasploit's
“reverse_http” shellcode (Figure 9).

Figure 10 shows a pointer to the
Process Environment Block (PEB)
and the PEB_LDR_DATA data
structure within. This target is the
`InMemoryOrderModuleList,̀ which
contains a list of all modules loaded
in memory. By traversing this list,
we can also get a list of functions
available within each module. Cobalt
Strike iterates over each DLL,
converts the full name to lowercase
and begins to calculate a hash
value of each export using the full
DLL name and the desired function

Figure 6

Figure 7

Figure 8

Figure 9

https://en.wikipedia.org/wiki/Process_Environment_Block

page 7 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

name. The hashing algorithm used is
a simple ROR13, the same one used
by Metasploit.

The retrieved DLL + Function name
is compared to a calculated hash
against the hex value (0x726774C)
passed in earlier as an argument
to `call_by_hash()`. If the match is
successful, Cobalt Strike calls that
function immediately with the other
arguments passed.

Figure 11 shows the relevant
functionality from the Metasploit’s
`hash.py:̀

The payload makes an outbound
HTTP call to the configured HTTP
C2 server.

The Cobalt Strike C2 server responds
with an HTTP 200 OK, containing a
very large binary blob. This blob is
the core functionality of Cobalt Strike,
better known as “beacon.dll.” From
here on out, this is the code that will
be used to control an infected host.
After retrieving the DLL, it is loaded
via a technique called Reflective DLL
injection.

DETECTION

Now that we have a good
understanding of how a Cobalt
Strike payload works, we can work
on creating detection for these
payloads. The goal when creating
detection content is to cover
something in its entirety, with the
fewest rules, without triggering false
positives. This, for the most part,
ensures we are creating generic
detection rather than something that
only targets one thing. At Talos, we
want our detection to catch variants
and potential future threats.

When looking into coverage for the
Cobalt Strike payloads, we found we

Figure 10

Figure 11

https://www.google.com/url?q=https://attack.mitre.org/techniques/T1055/001/&sa=D&ust=1596559074788000&usg=AFQjCNGxlDBHg3K-731T8ArLHwcCpVrVXQ
https://www.google.com/url?q=https://attack.mitre.org/techniques/T1055/001/&sa=D&ust=1596559074788000&usg=AFQjCNGxlDBHg3K-731T8ArLHwcCpVrVXQ

page 8 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

had some prior coverage alerting on the payloads, including
these Snort rules:

• 1:15306:22

• 1:11192:20

• 1:30471:3

• 1:30229:3

The first two are generic file type detection rules that are
the base for setting flowbits in Snort and can be ignored.
However, SIDs 1:30471 and 1:30229 are Metasploit
shellcode rules we released years ago that still apply here.

At the time, these rules were suspected to be false positive
prone and were not enabled by default in policy. We can’t
narrow them down to a specific type or protocol. Therefore,
we have to remove a lot of checks that tell Snort whether or
not to inspect a packet further and re-enabled them.

The key element here is the Snort header, `alert tcp any
any -> any any`. Most Snort rules will declare a traffic
direction (coming from or going to the user’s network)
and the applicable port ranges. Since this raw shellcode
can be used with potentially any exploit over an unknown
protocol or port, we can’t narrow it down to inspection on
for example just port 80. We also don’t know if a host is
compromised already and attempting to move laterally, so
we can’t specify the source and destination networks. This
means that Snort will attempt to match this particular byte
sequence on all TCP traffic crossing the sensor. Not only
is this undesirable for performance reasons, it heightens
the potential for false positives. We need to be a little more
cautious when releasing a catch-all rule such as this.

The following Snort rule also helped in detecting reverse
shell sessions from metasploit

• [1:30480:3] INDICATOR-SHELLCODE Metasploit pay-
load windows_x64_meterpreter_reverse_https

After analyzing the preexisting Snort rules, the only thing
left to cover is the outbound HTTP request and the binary
blob Cobalt Strike retrieves from the C2 server. Typically,
covering the initial outbound HTTP GET would be ideal
since we want to identify potential C2 traffic as fast as
possible and flag the host as compromised in Cisco
Firepower NGFW. However, the URI code we used in our
research could be anything and was always random in
samples. The HTTP Header fields were also unhelpful, since
there wasn’t anything unique enough to distinguish the
request apart from benign traffic. This leaves us with only

the HTTP response containing the binary blob.

The shellcode started similarly to the raw payload with a
`cld` instruction followed by a short function designed to
decrypt the rest of the payload with an operator configured
XOR key.

Since we don’t want to target encrypted data with our
detection, we used the start of the shellcode as the
detection target. This resulted in two new rules, both
looking for the same thing across different listeners.

• [1:53757:1] MALWARE-OTHER CobaltStrike beacon.dll
download attempt

• [1:53758:1] MALWARE-OTHER CobaltStrike beacon.dll
download attempt

TARGET MODULE: STAGED/STAGELESS EXECUTABLE
GENERATOR

This module will encompass both staged and stageless
Cobalt Strike beacons. This is the core component
delivered to a victim host and establishes persistence, C2
communication, and any further execution on the host.
Beacons are extremely versatile and expose a huge number
of features for operators.

Staged vs. Stageless

Stageless payloads are delivered to the victim all at once.
Typically, a stageless payload already contains a large
variety of malicious functionality and will not require
additional resources to infect the victim.

Staged payloads are usually small, malicious payloads
that are used to load a larger, more robust payload. This
allows an attacker to transfer a small binary to a targeted
host and retrieve the desired payload afterward. Stagers
are designed to be as small as possible so that they can
be delivered using different techniques and leave less of a
footprint.

Having a smaller initial payload with less functionality
is more likely to evade AV detection by appearing to be
benign. A stager can then grab the larger payload for more
functionality and load it directly into memory.

Stagers allow adversaries to embed your payloads in
different methods. An adversary could take staged code and
send it in an exploit with resource limitations on the target.

page 9 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

Beacon options

Generating a beacon payload can
result in a few different types of
executable files — each of them
embedded with a Listener and
architecture of your choice. This will
generate an `artifact.exe` file to save
on disk. How it’s used from there is
up to the operator.

• Raw (Stageless only)

• Windows EXE

• Windows Service EXE

• Windows DLL (32 bit)

• Windows DLL (64 bit)

Staged

After startup, Cobalt Strike spawns a
new thread designed to construct a
named pipe for further execution. For
the purposes of research, we opted
to utilize a 32 bit executable with a
reverse HTTP listener.

Figure 12 shows a format string that
calls to `sprintf()` with the default
structure of the named pipe. The
four-digit number is a randomly
generated number but we can see
that in a default configuration, the
name has a static structure like
“\\\\.\\pipe\\MSSE-6722-server.”

Following thread creation, the
named pipe is created and a
connection is initiated. The goal of
this is to process additional shellcode
embedded within the binary by
writing it to the named pipe thread.

This pipe is decrypted using a rolling
XOR against the data. The default
XOR key for this particular payload
is 0xE3F4C314. After decryption is
complete, another thread is created
that immediately jumps to and
executes the shellcode (Figure 13).

Figure 12

Figure 13

page 10 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

Stageless

Stageless operates in the same way a staged payload
does — it still spawns a named pipe and data needs to
be decrypted just like a staged payload. This payload in
particular is larger than 200KB.

However, once the final payload is decoded, it needs to be
loaded into memory. This is performed using a technique
called Reflective DLL loading — the process of loading a
library from memory into a host process.

An executable needs to access various resources to
function correctly. It needs to know its base address in
memory and have valid headers and a fully built import
address table. This is how an executable knows where to
call functions such as LoadLibrary or GetProcAddress.

Once the reflective loader has rebuilt the necessary sections
and relocated the image, we’ll see the actual path of execution.

Once we unpack beacon.dll, we can dump it to disk and see
the final artifact.

Beacon configuration

Cobalt Strike configuration is marked in the executable by
patterns that allow us to parse it directly out of an unpacked
beacon DLL. The configuration is XOR encrypted, but by
default, use a static XOR key for each respective beacon
version (3 or 4).

Figure 14 shows a decrypted Cobalt Strike configuration
from the unpacked Cobalt Beacon.

C2 COMMUNICATION

Heartbeat

An infected host will reach out to the Cobalt Strike C2
server periodically with a heartbeat, sending basic
metadata back home and gathering any commands issued
by an operator. When a command is requested to be
executed on the host, it’s queued up and waits for that host
to reach out.

Figure 14

https://www.exploit-db.com/docs/english/13007-reflective-dll-injection.pdf
https://www.exploit-db.com/docs/english/13007-reflective-dll-injection.pdf

page 11 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

Figure 15 shows the heartbeat.

It looks pretty benign, but all the metadata is stored in the
HTTP cookie. We can’t simply gain access to that data by
base64-decoding the cookie, since Cobalt Strike heartbeat
data is encrypted. Cobalt Strike uses RSA with PKCS1
padding to encrypt the data prior to sending it back home.

Talos researchers extracted the private/public key
directly from the teamserver running on a virtual machine,
something that wouldn’t be possible outside of an isolated
research environment.

Tasks

Now that we understand the heartbeats, let’s look at
the exchange for tasking a beacon. When a task is not
available, the server will respond with another encrypted

payload in the HTTP 200 OK (Figure 16).

When configured, the response payload is an encrypted
task. Cobalt Strike uses AES-256 in CBC mode with HMAC-
SHA-256 to encrypt task commands. The AES key can
be found in the beacon metadata we decrypted earlier.
It is calculated using the first 16 bytes of the decrypted
metadata.

Callbacks

After execution, the host calls back to the C2 server.
This time, the default configuration was an HTTP POST
containing another encrypted payload (Figure 17).

The first four bytes are the size of the encrypted payload so
we skip those when decrypting.

Figure 15

Figure 16

Figure 17

page 12 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

The structure of the data observed is:

• 4 bytes - Counter

• 4 bytes - Data Size

• 4 bytes - Type of callback

• Variable - Data

Figure 18 is a decrypted Process List callback.

Detection

Based on these actions, we wanted to write detection
that would catch a Cobalt Strike stager being downloaded
before it can target anything else. Catching the stager is
pivotal, as it is most likely to prevent infection. Once the
stager traverses into memory, it reflectively loads the final
beacon payload and becomes harder to deal with.

Researchers first generated every variant possible and
created PCAPs of the stager traversing over typical ports
seen in file-data traversal.

Once again, we triggered the Metasploit shellcode rules for
every payload when we checked prior coverage:

• 1:30229 INDICATOR-SHELLCODE Metasploit windows/
shell stage transfer attempt

• 1:30471 INDICATOR-SHELLCODE Metasploit payload
windows_adduser

• 1:30480 INDICATOR-SHELLCODE INDICATOR-SHELL-
CODE Metasploit payload windows_x64_meterpret-
er_reverse_https

Since we confirmed these rules provide coverage, we can
move onto the core stageless beacon.

The approach here was to once again find a unique set
of instructions that can be associated with Cobalt Strike
beacons while avoiding false positives. It was pretty difficult
to find a good match in the stageless beacons, but the
function in Figure 19 sparked our interest.

This function is pretty simple — its purpose is to parse the
DOS header and check for the correct file magic signature.

Figure 18

Figure 19: A function
inside a stageless Cobalt
Strike beacon.

page 13 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

If it exists, it jumps to the IMAGE_NT_OPTIONAL header
and checks the magic there.

After comparison, the AL byte is set to reflect the correct
architecture. This is used for further processing of the
file header. A quick run in Snort showed that this alerted
on every single beacon we generated. This doesn’t look
malicious on the surface, so researchers ran this function
with multiple preceding NOPs through false-positive
testing. Expectations were not high, but we couldn’t find a
single false positive. This wasn’t the case prior to adding in
the extra alignment bytes. Either NOP was less commonly
used for alignment in modern compilers, or we were
extremely lucky. Regardless, we had performed enough
due diligence in testing to give the rule a shot.

The result was four rules that are still going strong to this day.

• 1:53656 MALWARE-OTHER Cobalt Strike x86 execut-
able download attempt

• 1:53657 MALWARE-OTHER Cobalt Strike x86 execut-
able download attempt

• 1:53658 MALWARE-OTHER Cobalt Strike x64 execut-
able download attempt

• 1:53659 MALWARE-OTHER Cobalt Strike x64 execut-
able download attempt

TARGET MODULE: HTML APPLICATION ATTACK
GENERATOR

The focus of this attack generator is to generate an HTML
Application (HTA), a file extension for the HTML executable
file format and typically consists of HTML/Dynamic HTML
and a scripting language of choice. HTA files behave like
executables. They are popular among attackers because
they run as a fully trusted application in certain cases.

When using the HTML Application Attack generator the user
can select a Cobalt Strike listener as usual and the method,
including executable, PowerShell and VBA.

These methods do not determine the scripting language
used in the HTA files. In all methods, VBScript is used to
deliver the desired payload in the HTA file. The method,
however, changes the payload type and how it is executed
on the host. Let’s take a look at each of them.

Executable

The executable method (Figure 20) is a straightforward

attack, as it is simply designed to load a large ASCII hex
string and execute it on the host.

The shellcode is loaded by creating a `Scripting.
FileSystemOjbect` and using that to create a temporary
file on the host. After initializing the temporary file, the
shellcode stream is converted from hex string to bytes and
written to the file (Figure 18).

Finally, the file is executed using a WScript.Shell object and
the temporary file and folder are deleted to cover its tracks
(Figure 21).

PowerShell

The Powershell method is relatively naive at first glance,
as it once again uses the WScript.Shell object to invoke
PowerShell. This time, rather than creating a temporary
executable file, it simply runs powershell with a large
base64-encoded command (Figure 22).

We base64 decode the command, which results in a
unicode string containing additional PowerShell and another
base64 blob. Here, we can start to see the desired path to

Figure 22

Figure 20

Figure 21

page 14 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

infection, as it takes the second base64 blob and is creating
an `IO.MemoryStream` object out of it. A quick look at the
resulting code shows that we, once again, jumped the gun
in analysis and it’s gzip compressed.

We can quickly decompress the extracted data on the CLI
(Figure 23).

The newly decoded payload declares some new functions.

• `func_get_proc_address()`

• `func_get_delegate_type()`

This is a fairly old technique (around 2012) that allows
the user to invoke calls via .NET native method wrappers
in PowerShell. This allows the user to call the Windows
API using and execute code in a fileless manner via the
`System.Reflection` namespace.

We can then use`GetMethod()` to acquire a handle to the
desired functionality and bypass any restrictions. The goal
in this payload is to expose the `GetProcAddress` library
function so that we can load the desired Windows API code
and interact with it.

System.Reflection exposes another function called
`GetDeletegateForFunctionPointer`. Using this, Cobalt
Strike grabs a function pointer to any API function it needs
for execution.

Once an executable section of memory is allocated and

populated.. Cobalt Strike can then execute the payload
in memory through another delegate defined for the
memory region.

So what is the base64 string this time? It’s shell code, but
actually XOR encrypted (Figure 24).

This is pretty easy to decrypt. We know that it’s XOR’d using
the key 0x23 (35) so we can decode this using our method of
choice. In this case, we used `xortool-xor̀ (Figure 25)

Eventually, we determined that this is the same code as
seen in the raw payload section in different packaging.
Once Cobalt Strike gets it right, it reuses that work across
other attack options. This makes it more convenient for
defenders to write detection.

Figure 23

Figure 24

Figure 25

https://docs.microsoft.com/en-us/dotnet/api/system.reflection

page 15 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

 VBA

The VBA Method gives a little bit of a different approach
(Figure 26).

So far, we’ve seen basic methods of loading binary code
and executing it. In this method, we can see that it uses an
Excel Workbook to execute additional code. The first thing
that happens is Cobalt Strike loads up an `Excel.Application`
and then queries a registry key:

`HKEY_CURRENT_USER\Software\Microsoft\
Office\<Excel Version>\Excel\Security\AccessVBOM\̀

This key is a security setting for restricting default
programmatic access to the Office VB project. If it’s
enabled, Office will trust all macros and run any code
without a security warning or additional permissions from
the user. Cobalt Strike attempts to flip that switch and

disable this protection in the registry.

After that, Cobalt Strike once again calls the Windows API
to execute binary code. Then, it allocates an executable
section of memory within the process and runs it by calling
`kernel32.dll!CreateRemoteThread`.

Detection

This type of multilayer obfuscation is easy to extract when
in hand but can be extremely effective against security
products that don’t know it’s coming. But it’s possible to
work around this.

For the executable method, the shellcode was actually the
same assembly code as what we discussed earlier in the
Staged/Stageless Executables. The NOP-based function is
interpreted as a hex string, so we can clone those rules to

Figure 26

page 16 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

match a hex string, rather than actual bytes.

• 1:54110 MALWARE-OTHER Html.Trojan.CobaltStrike
HTML beacon download attempt

• 1:54111 MALWARE-OTHER Html.Trojan.CobaltStrike
HTML beacon download attempt

• 1:54112 MALWARE-OTHER Html.Trojan.CobaltStrike
HTML beacon download attempt

• 1:54113 MALWARE-OTHER Html.Trojan.CobaltStrike
HTML beacon download attempt

For the PowerShell method, we have again a ton of
obfuscated code underneath it, so the coverage should
target generic function calls. For this, we went with the
PowerShell command arguments, and supplemented that
with matching on a Wscript.Shell object being created.

• 1:54114 MALWARE-OTHER Html.Trojan.CobaltStrike
powershell payload download attempt

• 1:54115 MALWARE-OTHER Html.Trojan.CobaltStrike
powershell payload download attempt

Lastly, we have the VBA Method. Our researchers found
this easy to cover because HTA files don’t often interface
with Excel workbooks, let alone one that tinkers with the
“AccessVBOM” registry key.

• 1:54116 MALWARE-OTHER Html.Trojan.CobaltStrike
VBA payload download attempt

• 1:54117 MALWARE-OTHER Html.Trojan.CobaltStrike
VBA payload download attempt

From there, we cloned all that to ClamAV coverage to get
the following signatures:

• Html.Trojan.CobaltStrike-7932561-0

• Html.Trojan.CobaltStrike-7932562-0

• Html.Trojan.CobaltStrike-7932563-0

• Html.Trojan.CobaltStrike-7932564-0

TARGET MODULE: SCRIPTED WEB DELIVERY

In Cobalt Strike, there’s a feature called “scripted web
delivery.” Executing a scripted web delivery attack simply
means that you pick one of the Cobalt Strike payloads/
listeners and Cobalt Strike will then host that payload at
a user-configured URI. These can be generated in three
different languages: Bitsadmin, PowerShell and Python.

After hosting the payload, Cobalt Strike provides a

command that can be executed, in the language of choice,
that reaches out and grabs the malicious payload from an
attacker-controlled web server and executes it.

We are only going to concentrate on the PowerShell
implementation, as it is the most commonly used module.
The initial execution is using a web client to download an
additional PowerShell payload from the attacker controlled
web server and then continue to execute that code.

Payload

After reaching out to grab the real payload, we get a huge
obfuscated PowerShell script from the web server, almost
200KB in size.

This script contained code reuse from the HTA module,
but we still needed to go one layer deeper and verify the
shellcode was unique in this module. We base64-decode
the data and decrypt it using the same `0x23` default
XOR key — and it’s already much larger than the previous
payload.

It’s not raw shellcode like we saw in the HTA payloads,
you can immediately see that the “MZ” header is present.
This seems to be a stageless beacon included in the
powershell script. You might wonder why it wasn’t
included in the HTA attack. The reason is the HTA module
is executing a Powershell one-liner and Windows has
a character limit on command line strings, 32767. That
number is even lower when executing a command from
`cmd.exe`, 8191. The character limit varies across a variety
of execution methods and these numbers are not always
going to be correct.

Since this payload is downloaded using a small one-liner to
execute a string retrieved from the Cobalt Strike controlled
server, that limit is bypassed and a more reliable payload
can be provided.

Detection

To detect something, we first have to narrow down what
we can actually see in Snort or ClamAV. We are not able
to deobfuscate a PowerShell script coming across the
network prior to detection — it’s simply not feasible without
introducing latency for the client in most cases.

So, for detection, we are left with the initial obfuscated
payload downloaded. That’s not so bad because Cobalt
Strike, in its current configuration, once again has a

page 17 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

static format when generating the PowerShell script.
We know that in this instance, the code `New-Object
IO.MemoryStream(,[Convert]:: FromBase64String(` following
will always be present in a position relatively close to the
start of the file.

This gives us simple, but efficient, coverage using

• 1:53973 MALWARE-OTHER CobaltStrike PowerShell
web delivery attempt

• 1:53974 MALWARE-OTHER CobaltStrike PowerShell
web delivery attempt

TARGET MODULE: SIGNED JAVA APPLET ATTACK

The applets in this attack are self-signed, giving users
limited options: a listener (per usual), port, local host and
the URI it’s hosted on. This will spawn a hosted Java Applet
on a malicious Cobalt Strike web server to infect users. If a
user gives an applet permission to run, infection will occur.

Landing Page

Upon visiting the page, the user sees a generic landing
page that loads a malicious JAR file, “cross_platformi9.jar”
and applet class loaded is defined by the “code” parameter,
“Java.class” (Figure 27).

The first thing that catches the eye is that two parameters
are passed — “id,” which contains a large base64 blob, and
“type” which is set to “theme.” We can confirm this right off
the bat by comparing the length of the raw HTTP beacon
payload against the length of the decoded binary blob, both
a total of 799 bytes.

A second HTTP GET request is made for the JAR file during
the process of loading this applet. So that’s the next step.

Java archive (JAR)

First, we’ll look at the JAR file (Figure 28).

We have a few classes, and two DLLs named “main.dll”
and “main64.dll”. You can also see the default signature file

Figure 27

Figure 28

page 18 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

(MYKEY.SF) and RSA certificate (MYKEY.RSA) used to sign
the binary. Figure 29 shows us jusing jadx to decompile the
source code.

The base code called “Java.class” isn’t complicated — it’s
an extension of “Applet” designed to spawn a thread. And
the Base64.dll class isn’t malicious, it handles base64 as
expected.

“Main.class” is fairly basic but shows us that a temporary
file is created, named “main.dll” and writes data to that
file from either the main64.dll or main.dll file contained in
the JAR file based on the system architecture. The system
property “sun.arch.data.model” is a simple method to return
the system’s word size, easily determining the architecture.
Following this, the new DLL file path is fed to `System.
load()`.

Cobalt Strike uses the Java Native Interface (JNI) to perform
injection. This is essentially the same as creating bindings
to another program. It allows users to load a library into the
Java Virtual Machine (JVM) and interact with it.

Main.dll

Since inject() is called from the JNI with the shellcode blob,
we can load this into IDA and see an exposed function —
J̀ava_Main_inject()`.

The handoff to J̀ava_Main_inject` isn’t as straightforward as
it would be passing a byte/character array in C/C++. In this
case the exported function looks a little like Figure 30:

The data is extracted from the JNI objects and then passed
to the real `inject()` function that spawns a new thread and
resumes execution in the shellcode passed in from the “id”
parameter.

Detection

We need to isolate the things we want to cover and
separate them from each other when evaluating multiple

levels of execution. Here, we can identify a few things.

1. The landing page that spawns the malicious applet

2. The JAR file

3. main.dll/main64.dll

The landing page was fairly simple, as we already identified
that the parameter is simply the raw payload from earlier.
The JAR files contain the same DLL 32/64 bit and code
every time but have a different name. This simplifies things
as we target what we know is malicious in there.

The last thing was the extracted DLL, and our prior work
paid off. We had prior coverage available from various x32/
x64 download rules we created researching the staged/
stageless beacons.

TARGET MODULE: SMART JAVA APPLET ATTACK

The Smart Java Applet Attack is very similar to Signed Applets
in execution. Instead of just running raw shell code, though, it
attempts to gain execution through various Java exploits. It is
deemed “Smart” as it determines what exploit to use based
on the version of Java the victim host is running.

Landing Page

The landing page is for the most part the same as Signed
Applet Attacks. It spawns a malicious page on the default
URI, “/SiteLoader.”

Once again, there’s a base64 blob containing the “id”

Figure 29

Figure 30

page 19 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

parameter and a “type” parameter
with the value “os.” The payload is
slightly different, however, since it
uses the same shellcode stub. We
already know what this does for
the most part, so we’ll skip further
analysis.

Java Archive

Per the Cobalt Strike official
documentation, we can get a brief
understanding of this module’s goal.

• The smart applet analyzes its
environment and decides which
Java exploit to use. If the Java
version is vulnerable, the applet
will disable the security sandbox,
and spawn a session using Cobalt
Strike’s Java injector.

• These exploits in this attack work
against Java 1.7u21 and older.
Java 1.6u45 and older is also
vulnerable to this attack.

The exploits used are not specified
however, we know it affects the Java
versions shown in Figure 31. Since
we don’t know what exploits it’s
using already, we must look closer.

There are a lot more classes shown
in Figure 32, but we can see that
main.dll/main64.dll are still included.
A quick `sha256sum` reveals that
these are the same DLLs included
in the Signed Applet Attack module.
We once again can decompile the jar
using `jadx` as we did in the Signed
Applet Attack. The decompilation
was not clean as we receive one
error for an unknown instruction,
“invoke-polymorphic”. This
instruction is not currently supported
in jadx, so we will just ignore it for
now and start looking at J̀avaApplet.
class` in Figure 31.

This class directs execution based on

Figure 31

Figure 32

the version of Java installed, here we can identify how it targets each version. The
code polls “java.version” via a call to System.getProperty to get the JRE version
installed, if any. Following that it is matched against the PCRE `1.(\d+).0_(\d+)`. The
important thing with this PCRE is that it has two capture groups that retrieve major
and minor Java versions for further processing. It’s important to understand the
structure of Java version strings. [See https://www.oracle.com/java/technologies/
javase/versioning-naming.html].

"1.<Major Version>.0_<Update Release>"

When the version string for the product is reported as “java version 1.8.0_5”, the
product will be called JDK 8u5, JDK 8 update 5 or, when the update version is not

https://www.oracle.com/java/technologies/javase/versioning-naming.html
https://www.oracle.com/java/technologies/javase/versioning-naming.html

page 20 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

important, JDK 8.

We discovered this module exploits multiple vulnerabilities.
The Java execution flow is as follows:

• <= Java 6u27 -> `Rhino()`

• <= Java 6u45 -> `AppIcon()`

• == Java 7u0 -> `Rhino()`

• <= Java 7u6 -> `Exec()`

• <= Java 7u21 -> `Bean()`

If the regex fails and the version string is equal to “1.7.0”
also direct execution to `Rhino()`

Main.java

Main.java contains the same code as we saw in the Signed
Applet attack. Its sole purpose is to run main.dll, or main64.
dll, with the shellcode provided in the “id” parameter by
interfacing with the JNI. We will touch on how this works a

bit in the next section.

CVE-2011-3544 - Oracle Java applet rhino script engine
remote code execution

Java Version <= 1.6.0_27 or Java Version == 7.0

This class is associated with the Rhino Script Engine which
is used to run arbitrary code outside of the Java sandbox.

This was dangerous at one point in time because these
JavaScript objects were not controlled by the Java
SecurityManager. Protections were put in place to limit
attempts to execution however it was determined that you
bypass the sandbox limitations by storing Java code in a
string and then executing it. When executing the `toString()`
method, it returns a Java function in the context of the caller
(Figure 33).

So if we are restricted by the permissions of the caller,
we are still limited in execution privileges. Instead, we

Figure 33

page 21 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

need to generate an error object containing the code as
its message. This module extends the Main class. When
spawning a thread of itself, it will look to see if the class
implemented `Runnable` and the `run()` function, which
`Main` does. This means that the goal is to spawn main.dll
with desired shellcode but from outside the sandbox.

CVE 2013-2465 - Oracle Java 2D ImagingLib remote
code execution

Java Version <= 1.6.0_45

This vulnerability exploits a vulnerability when filtering()
BufferedImage’s using `AffineTransformOp`.

First, some necessary helper classes are defined
to assert certain behavior later down the road,
“ComponentColorModel” and “ICC_ColorSpace” (Figure 34).

Figure 35 shows a defined ColorComponentModel that

is supplied to the `BufferedImage` constructor to fool a
specific check within `storeImageArray()`. That check is
for `(hintP->packing == BYTE_INTERLEAVED)`. When this
check succeeds, data is written back to the destination.
The second class defines a ComponentColorModel
that will always return `True` when calling
`isCompatibleRaster()`.

Now to prepare an exploit, we move to `loadIcon()`. First,
we need to prepare the necessary objects for execution.
The order of the following allocations is extremely
important as we want them to be aligned in memory
(Figure 35).

To get a better understanding of Java access control security.
A `Statement̀ object can represent arbitrary method calls.
When an instance of `Statement̀ is created, the current
security context is stored in `Statement.acc .̀ When calling
`execute()̀ on that statement, Java attempts to verify that the

Figure 34

Figure 35

page 22 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

permissions surrounding that call have
not been changed by looking at the
value of `Statement.acc .̀ Therefore
the goal of this exploit is to gain the
correct permissions on `System.
setSecurityManager()̀ to disable it by
overwriting it’s `AccessControlContext̀ .
To prepare for that, a new
`Permissions̀ object is created with
`AllPermission()̀ (Figure 36).

Now, comes CVE-2013-2465
(Figure 37).

Two `BufferedImagè are created. The
second uses the dataBufferByte[]
object we declared earlier. A raster
is created with a `dataBitOffset`
that points outside of the
`dataBufferByte[16]` memory structure.
CobaltStrike then sets the first pixel to
`0xFFFFFFFF .̀ Finally, the vulnerable
storeImageArray() call through filter()
is performed and data is written back
to the object and corrupts the adjacent
object’s length.

Cobalt Strike can now loop
through `iArr[]` until it finds the
default `Statement.acc` field and
overwrite it with the `AllPermission`
object created earlier. Now,
`setSecurityManger` can be executed
with the necessary permissions to
disable it and run shellcode.

CVE-2012-4681 - Oracle Java 7
SunToolkit Remote Code Execution

Java Version <= 1.7.0_6

This vulnerability exploits the Java
`Class.forName()` or `ClassFinder` to
gain access to private object fields.
In the context of CobaltStrike, this
resolves around calls to `SetField()`
from `sun.awt.SunToolkit`. Originally
in Java 6, this was not possible as we
weren’t allowed to gain a reference
to `sun.awt.SunToolkit`. In Java 7.0_6,
this changed and introduced CVE-

Figure 36

Figure 37

2012-4681.

There are three main methods to this class.

• `check()`

• `SetField()`

• `GetClass()`

Check() is the first function executed in the exploit and the execution path is
pretty simple. As we saw in CVE-2013-2465, a Statement object is created for
`setSecurityManager()`, along with a new permissions object.

The next operation is a call to `sf()`, short for `SetField()`, private class method
with the statement class type, the desired field “acc”, our Statement object,
and the new permissions we want. `Sun.awt.SunToolkit` is a restricted class
for untrusted code, normally you wouldn’t be able to gain access in our current
security context.

page 23 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

An adversary could exploit this vulnerability by calling
`Class.forName()` as the target method of the Expression. In
reality, `forName()` is not called. Instead, `Expression` uses
custom logic to load classes without verifying permissions.
Without `Expression`, this would not be possible.

After returning to `SetField()` with our privileged class
access, the second issue is exploited to gain access to
a private field. An adversary could go on to disable the
security manager and execute arbitrary shellcode.

CVE-2013-2460 - Oracle Java ProviderSkeleton invoke()
remote code execution

Java Version <= 1.7.0_21

This exploit involves gaining access to a restricted package
through a public interface.

This exploit can be found in:

• Bean

• BeanHelper

• BeanProvider

The `com.sun.tracing.Provider` and `java.lang.reflect.
InvocationHandler` are the main culprits here. This gives
access to a `Provider` interface, or `ProviderSkeleton`, and
provides the base for the target `invoke()` function.

This starts obtaining a lookup method by creating an
Invocationhandler via ` java.lang.reflect.Proxy`. From there,
the exploit can obtain a reference to `MethodHandles.
lookup` and call it via the InvocationHanlder defined earlier.

This is most of the work needed to begin exploitation, access
to the `invoke()̀ method is already provided. But how does
that give an attacker an opportunity to elevate privileges? The
invoke method, in Java 7u21, does not perform any checks on
whether or not a public method should be accessible by the
calling class. See the openjdk commit in Figure 38.

The second issue is that in this case, `invoke()̀ does not
return the calling blass but instead returns `sun.tracing.
ProviderSkeletoǹ . This all comes together because
`ProviderSkeletoǹ is a privileged class. Eventually, Cobalt Strike
loads several classes and, once again, disables the manager.

Cobalt Strike now uses the `displayAd()` (Figure 39) to make
calls to invoke() and return privileged classes that they
would otherwise not have access to.

You can see another call to `getMethod()` prior to invoking
the argument, this function is used to obtain access to the
familiar `forName()` method. Then once again like earlier, that
can be called to gain access to restricted classes (Figure 40).

Figure 38

Figure 39

Figure 40

page 24 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

Next, three restricted classes are loaded:

• `sun.org.mozilla.javascript.internal.Context`

• `sun.org.mozilla.javascript.internal.DefiningClassLoader`

• `sun.org.mozilla.javascript.internal.GeneratedClassLoader`

This is now used to load the `BeanHelper()` class included
with the Smart Applet and execute it under a privileged
context by calling `AccessController.doPrivileged()’, as
shown in Figure 41.

And the security manager is disabled... again.

Detection

The amount of devices running Java is astoundingly
high still in 2020. It still continues to be a widely used
language and commonly installed utility for users. These
vulnerabilities are pretty old, but for the Smart Applet to be
effective, the amount of vulnerable devices is likely still high
enough to warrant them being included.

Now, detection here was the easiest part. Remember
how the landing page was extremely similar to the Signed
Applet module? Additionally, main.dll/main64.dll is again
included in the Smart Applet JAR. We already covered it
with the same detection. Case closed on some old Java
vulnerabilities with prior coverage.

TARGET MODULE: SYSTEM PROFILER

This module is designed to perform reconnaissance on
systems visiting a Cobalt Strike-controlled web server. It is
important to note that this module is not intended to infect a
host, but rather supply information on the operating system
and applications installed on a target.

Payload

When an operator configures the system profiler, there are
two options for gathering the desired information. The first
one utilizes a large JavaScript file that leverages multiple
ActiveX controls to gather information. The second is an
optional Java Applet, a common theme we’ve seen in
Cobalt Strike, to supply additional information on top of the
JS. The final configuration option is a redirect. This makes
the victim client redirect to another page after performing
profiling the system.

The initial landing page for the system profiler delivers a
page with code similar to Figure 42:

Let’s glance over both types for a high-level overview.

Java Applet

The initial landing page checks to see if Java is installed and
enabled in two different ways. First, it uses `deployJava.
geJREs()` to return an array of installed versions, or an
empty array if not present. The second is `navigator.

Figure 41

Figure 42

page 25 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

javaEnabled()` which is a simple boolean "True" or "False".

Java is installed if either check succeeds. The Java Applet,
“iecheck.class,” runs on the page, as shown in Figure 43.

The class contains a small code base that only has two
functions. One is designed to return the version of Java,
the client is running. The other is a little more tricky and is
geared toward exposing the internal IP address of the client.

JavaScript

The JavaScript is the bulk of the profiler and a huge file
weighing in at over 200KB and almost 5,000 lines of code
(after beautifying it). It checks browser versions, system
information and installed applications through JavaScript
and ActiveX calls.

Some of the checks include but are not limited to web
browser, operating system, Adobe Acrobat, Adobe Flash
and more. It also includes another attempt to get the
internal IP address of the client, just like the Java Applet.

Detection

Detection here is pretty straightforward. Since the profiler
is trying to do so much at once, we can make quick work on
the landing page by checking HTTP responses.

We want to look for any abnormal combination of
application version checks by using ActiveX control class
IDs and object names, static version checks, and attempts
to load a Java applet. We can also look for attempts to
store data within a 1x1 (width x height) element named
`checkip`.

Figure 43

Figure 44

page 26 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

Generally speaking, it’s the easiest way to catch
communication in the response from the client. At the end
of the “check.js” file, we see an attempt to make an HTTP
POST request back to the server with whatever information
was collected (Figure 44).

We can see that the client data section of the HTTP
post contains the parameters and values sent to the
`application()` function.

This left us with the following detection:

Snort

• 1:13913 BROWSER-PLUGINS AcroPDF.PDF ActiveX
clsid access attempt

• 1:23878 BROWSER-PLUGINS Oracle JRE Deployment
Toolkit ActiveX clsid access attempt

• 1:38038 POLICY-OTHER PDF ActiveX CLSID access
detected

• 1:54180 MALWARE-OTHER Cobalt Strike system profil-
ing attempt

• 1:54181 MALWARE-OTHER Cobalt Strike system profil-
ing attempt

• 1:54182 MALWARE-OTHER Cobalt Strike system profil-
ing attempt

ClamAV

• Java.Malware.CobaltStrike-8008971-0

CONCLUSION
This is an in-depth view into the Cobalt Strike attack
framework, how Talos researchers analyzed each module
and the struggles, breakdowns, victories, and detection that
came along with it.

The research performed resulted in more than 50
signatures between Snort and ClamAV combined, covering
over 400 Cobalt Strike samples.

It’s important to note that the resulting detection based on
this research project is intended to provide robust coverage
for Cobalt Strike at its core, but is by no means exhaustive.
Large-scale attack frameworks are always evolving,
especially highly funded ones such as Cobalt Strike.

Researchers must target what each security product does
well and use that to their advantage. With that, you also
have to know where its weaknesses lie. Having a good

page 27 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

understanding of the strengths and weaknesses in Snort or
ClamAV is key to developing good generic detection.

Does this mean we have covered Cobalt Strike in its entirety
and it’s forever dead in the eyes of Talos? No. Does it mean
we have provided what we believe to be a reasonably high
level of detection to stop Cobalt Strike in its current form?
Most definitely.

page 28 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

APPENDIX A: COVERAGE

STAGED/STAGELESS EXECUTABLES

Snort

• 1:53656 MALWARE-OTHER Cobalt Strike x86
executable download attempt

• 1:53657 MALWARE-OTHER Cobalt Strike x86
executable download attempt

• 1:53658 MALWARE-OTHER Cobalt Strike x64
executable download attempt

• 1:53659 MALWARE-OTHER Cobalt Strike x64
executable download attempt

ClamAV

• `Win.Trojan.CobaltStrike-7899871-1

• `Win.Trojan.CobaltStrike-7899872-1

SCRIPTED WEB DELIVERY POWERSHELL

Snort

• 1:45907 MALWARE-CNC Cobalt Strike DNS beacon
outbound TXT record **(UPDATED)**

• 1:45908 MALWARE-CNC Cobalt Strike DNS beacon
inbound TXT record **(UPDATED)**

• 1:53972 MALWARE-OTHER CobaltStrike beacon.dll
DNS download attempt

• 1:53973 MALWARE-OTHER CobaltStrike powershell
web delivery attempt

• 1:53974 MALWARE-OTHER CobaltStrike powershell
web delivery attempt

• 1:53975 INDICATOR-COMPROMISE CobaltStrike
multiple large DNS TXT query responses

ClamAV

• `Win.Trojan.Meterpreter-7385375-0`

BEACON BINARY PAYLOADS

Snort

• 1:30229 INDICATOR-SHELLCODE Metasploit windows/
shell stage transfer attempt **(UPDATED)**

• 1:30471 INDICATOR-SHELLCODE Metasploit payload
windows_adduser **(UPDATED)**

• 1:30480 INDICATOR-SHELLCODE INDICATOR-
SHELLCODE Metasploit payload windows_x64_
meterpreter_reverse_https **(UPDATED)**

• 1:53757 MALWARE-OTHER CobaltStrike beacon.dll
download attempt

• 1:53758 MALWARE-OTHER CobaltStrike beacon.dll
download attempt

ClamAV

• Win.Trojan.MSShellcode-5

• Win.Trojan.CobaltStrike-7913051-0

BEACON POWERSHELL PAYLOADS

Snort

• 1:54095 MALWARE-OTHER Win.Trojan.CobaltStrike
powershell beacon download attempt

• 1:54096 MALWARE-OTHER Win.Trojan.CobaltStrike
powershell beacon download attempt

ClamAV

• Win.Trojan.CobaltStrike-7917400-0

HTML APPLICATION (HTA) ATTACKS

Snort

• 1:8068 BROWSER-PLUGINS Microsoft Windows
Scripting Host Shell ActiveX function call access

• 1:54110 MALWARE-OTHER Html.Trojan.CobaltStrike
HTML payload download attempt

• 1:54111 MALWARE-OTHER Html.Trojan.CobaltStrike

page 29 of 29© 2020 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

The art and science of detecting Cobalt Strike

HTML payload download attempt

• 1:54112 MALWARE-OTHER Html.Trojan.CobaltStrike
HTML payload download attempt

• 1:54113 MALWARE-OTHER Html.Trojan.CobaltStrike
HTML payload download attempt

• 1:54114 MALWARE-OTHER Html.Trojan.CobaltStrike
powershell payload download attempt

• 1:54115 MALWARE-OTHER Html.Trojan.CobaltStrike
powershell payload download attempt

• 1:54116 MALWARE-OTHER Html.Trojan.CobaltStrike
VBA payload download attempt

• 1:54117 MALWARE-OTHER Html.Trojan.CobaltStrike
VBA payload download attempt

ClamAV

• Html.Trojan.CobaltStrike-7932561-0

• Html.Trojan.CobaltStrike-7932562-0

• Html.Trojan.CobaltStrike-7932563-0

• Html.Trojan.CobaltStrike-7932564-0

COBALT STRIKE SIGNED APPLET ATTACK

Snort

• 1:54169 MALWARE-OTHER Cobalt Strike signed java
applet execution attempt

• 1:54170 MALWARE-OTHER Cobalt Strike signed java
applet execution attempt

• 1:54171 MALWARE-OTHER Cobalt Strike signed java
applet download attempt

• 1:54172 MALWARE-OTHER Cobalt Strike signed java
applet download attempt

• 1:54173 MALWARE-OTHER Cobalt Strike signed java
applet download attempt

• 1:54174 MALWARE-OTHER Cobalt Strike signed java
applet download attempt

• 1:54175 INDICATOR-COMPROMISE Cobalt Strike
default signed applet attack URI

ClamAV

• Win.Trojan.CobaltStrike-8001474-0

• Win.Trojan.CobaltStrike-8001477-1

COBALT STRIKE SMART APPLET ATTACK

Snort

• 1:54183 INDICATOR-COMPROMISE Cobalt Strike
default smart applet attack URI

ClamAV

• Prior coverage signed applet submissions

COBALT STRIKE SYSTEM PROFILER ATTACK

Snort

• 1:13913 BROWSER-PLUGINS AcroPDF.PDF ActiveX
clsid access attempt **MAX DETECT**

• 1:23878 BROWSER-PLUGINS Oracle JRE Deployment
Toolkit ActiveX clsid access attempt **MAX DETECT**

• 1:38038 POLICY-OTHER PDF ActiveX CLSID access
detected **MAX DETECT**

• 1:54180 MALWARE-OTHER Cobalt Strike system
profiling attempt

• 1:54181 MALWARE-OTHER Cobalt Strike system
profiling attempt

• 1:54182 MALWARE-OTHER Cobalt Strike system
profiling attempt

ClamAV

• Java.Malware.CobaltStrike-8008971-0

	Getting up to speed
	Listeners
	Web management
	Reporting

	Introduction
	Attack analysis
	Execution
	Target Module: Raw Shellcode generator
	Detection
	Target module: Staged/stageless executable generator
	C2 Communication
	Target Module: HTML application attack generator
	Target Module: Scripted web delivery
	Target Module: Signed Java Applet Attack
	Target Module: Smart Java Applet Attack
	Target module: System profiler

	Conclusion
	Appendix A: Coverage
	Beacon Binary Payloads
	Beacon PowerShell payloads
	HTML Application (HTA) Attacks
	Scripted Web Delivery PowerShell
	Staged/Stageless Executables
	Cobalt Strike signed applet attack
	Cobalt Strike smart applet attack
	Cobalt Strike system profiler attack

